

LDP24AS

TRANSIL LOAD DUMP PROTECTION

FEATURES

- TRANSIENT VOLTAGE SUPPRESSOR DIODE ESPECIALLY DESIGNED FOR LOAD DUMP EFFECT PROTECTION
- HIGH SURGE CURRENT CAPABILITY : 40 A / 40 ms EXPONENTIAL WAVE
- COMPLIANT WITH MAIN STANDARDS SUCH AS:
 -ISO / DTR 7637
 -SAEJ 1113A ...

DESCRIPTION

Transient voltage suppressor diode especially developed for sensitive circuit protection in automotive systems such as dash board, car radios etc.

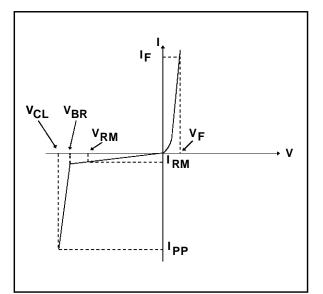
Its high surge current capability and instantaneous response to transients provide an efficient protection against the load dump effect.

ABSOLUTE RATINGS (limiting values)

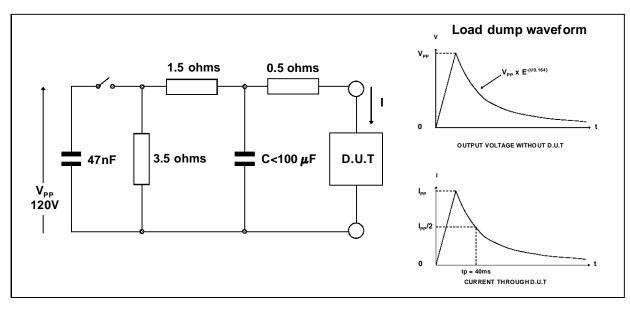
Symbol	Parameter		Value	Unit
VPP	Peak pulse load dump overvoltage See note 1 - 2	T _{amb} = 85°C	120	V
Р	Power dissipation on infinite heatsink $T_{amb} = 100^{\circ}C$		5	W
IFSM	Non repetitive surge peak forward current.	repetitive surge peak forward current. T _j initial = 25°C t = 10 ms		A
T _{stg} Tj	Storage and junction temperature range.		- 65 to + 175 170	°C ℃
ΤL	Maximum lead temperature for soldering during 10 sec at 4 mm from case.		230	°C

THERMAL RESISTANCES

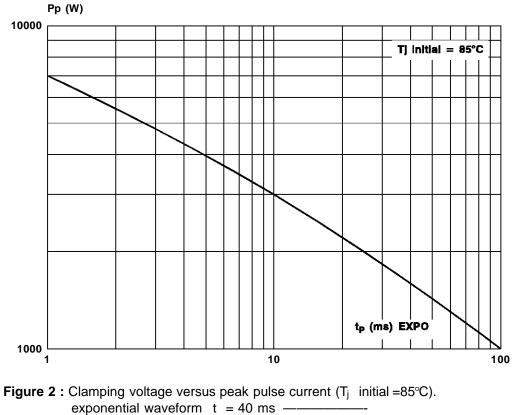
Symbol	Parameter	Value	Unit
R _{th} (j-l)	Junction-leads on infinite heatsink	15	°C/W
R _{th} (j-a)	Junction to ambient on printed circuit. Llead = 10 mm	50	°C/W


Note 1 : For surges greater than the maximum values,

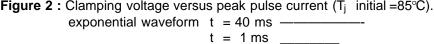
the diode will present a short-circuit Anode - Cathode.

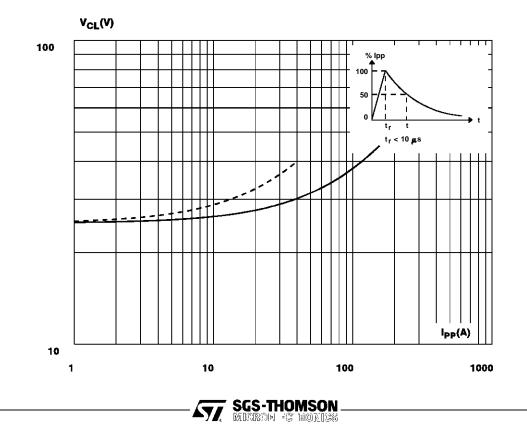

ELECTRICAL CHARACTERISTICS

Symbol	Parameter		
VRM	Stand-off voltage.		
VBR	Breakdown voltage.		
VCL	Clamping voltage.		
IPP Peak pulse current.			
ατ	Temperature coefficient of VBR.		
С	Capacitance		
t clamping	Clamping time (0V to VBR): tp = 1ps		



Symbol	Test Conditions	Min.	Тур.	Max.	Unit
IRM	$ \begin{array}{l} T_{C} = -40^{\circ}C & V_{RM} = 24V \\ T_{C} = 25^{\circ}C & \\ T_{C} = 85^{\circ}C & \end{array} $			10 50 300	μΑ
VBR	$T_{C} = 25^{\circ}C$ $I_{R} = 1mA$	25		32	V
VCL	$\begin{array}{ll} T_{C} = -40^{\circ}C & I_{PP} = 40A \\ T_{C} = 25^{\circ}C & (Note \ 2) \\ T_{C} = \ 85^{\circ}C \end{array}$			36 38 40	V
αΤ	$T_{C} = 25^{\circ}C$			9.6	10 ⁻⁴ /°C
С	$F = 1MHz$ $V_R = 0V$		8000		pF


Note 2 : Surge generator



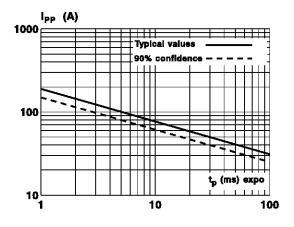


Figure 1 : Peak pulse power versus exponential pulse duration (T_j initial =85°C).

Figure 3 : Peak pulse current versus exponential pulse duration (T_j initial =85°C).

Figure 4 : Peak pulse power versus junction temperature.

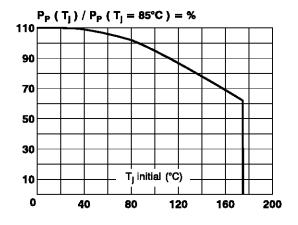
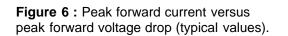
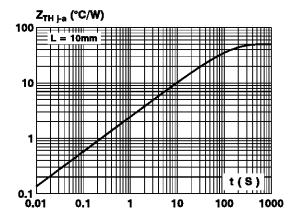
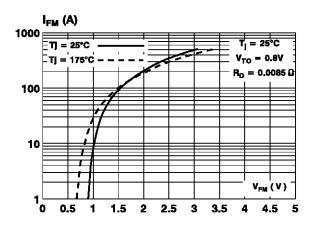
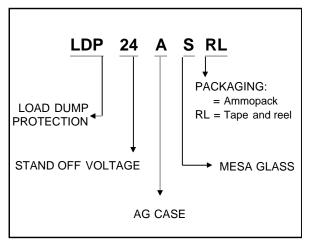
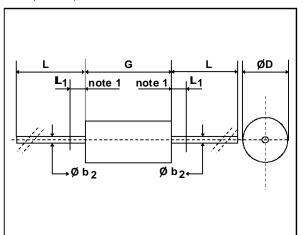





Figure 5 : Transient thermal impedance junction-ambient versus pulse duration (device mounted on PC Board with L lead = 10mm).




MARKING : Logo, Date Code, Type Code, Cathode Band.

Weight = 1 g.

Packaging : standard packaging is in tape and reel.

PACKAGE MECHANICAL DATA

AG (Plastic).

Ref	Millimeters		Inches		
	min	max	min	max	
Ø b2	1.35	1.45	0.053	0.057	
ØD	-	8	-	0.315	
G	-	9	-	0.354	
L	20	-	0.787.	-	
L ₁	-	1.27	-	0.050	
Note1: The diameter Ø b2 is not controlled over zone L1. Cooling method : by convection (method A).					

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

Purchase of I²C Components by SGS-THOMSON Microelectronics, conveys a licence under the Philips I²C Patent. Rights to use these components in an I²C system, is grantede provided that the system conforms to the I²C Standard Specification as defined by Philips.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

